Sujet commun: ENS Ulm, Cachan et Fontenay-Saint-Cloud

DURÉE: 4 heures

1er Problème

Les parties I), II), III), IV), V) 1), 2) peuvent se traiter de manière indépendante.

- I) Soit $\lambda > 0$ et $g_* : \mathbb{R} \longrightarrow \mathbb{R}$ définie par $g_*(t) = \lambda e^t$. Soit G_* la primitive de q_* définie sur \mathbb{R} et telle que $G_*(0) = 0$.
- 1) Quel est l'ensemble des valeurs prises par g_* : $\{g_*(t); t \in \mathbb{R}\}$?
- 2) Pour a fixé, étudier les fonctions $t \mapsto at G_*(t)$, définies sur \mathbb{R} .
- 3) Soit $a \in]0, \infty[$.
 - a) Calculer

$$H_*(a) = \max_{t \in \mathbb{R}} (at - G_*(t))$$

Montrer que le maximum est atteint pour un t > 0 si et seulement si $a > \lambda$.

- b) Calculer $H_*(\lambda)$ et étudier le comportement de $H_*(a)$ lorsque $a \to 0+$.
- 4) Montrer que pour tout $t \in \mathbb{R}$

$$G_*(t) = \max_{a \in]0,\infty[} (ta - H_*(a))$$

II) E désigne l'ensemble des fonctions $G: \mathbb{R}_+^* \longmapsto \mathbb{R}$, deux fois dérivables sur \mathbb{R}^*_{\perp} , et telles que la dérivée première g = G' vérifie:

 $\lim_{x\to 0^+} g(x) = 0, \quad \lim_{x\to +\infty} g(x) = +\infty, \quad g \text{ strictement croissante sur } \mathbb{R}_+^*.$

1) Montrer que pour $\alpha > 0, \beta \in \mathbb{R}$,

$$\alpha G + \beta \in E \text{ si } G \in E$$

2) Pour $G \in E$, on définit la fonction H sur \mathbb{R}_+^* par

$$H(a) = \max_{t \in \mathbb{R}^*_+} (at - G(t))$$

- a) Après avoir justifié l'existence de g^{-1} , application réciproque de g sur \mathbb{R}_{+}^{*} , exprimer H à l'aide de G et de g^{-1} .
 - b) Montrer que $H \in E$.

On désigne par A l'application de E dans E définie par H = A(G).

- 3) Pour $\alpha > 0$, $\beta \in \mathbb{R}$ et $G \in E$, soit $\hat{H} = A(\alpha G + \beta)$. Exprimer $\hat{H}(a)$ pour a>0 en fonction de α , β et de la fonction H=A(G).
- 4) Pour p > 1, on pose $G_p(t) = \frac{t^p}{p}$. Montrer que $G_p \in E$ et que

$$A(G_p) = G_q$$
, avec $\frac{1}{p} + \frac{1}{q} = 1$. Calculer $A(A(G_p))$.
5) Calculer $A(A(G))$ pour $G \in E$.

- 6) A est-elle injective? surjective?

- III) On considère dans cette question la fonction $G_0(t) = \log \frac{e^t + e^{-t}}{2}$ de dérivée g_0 , définie sur \mathbb{R} .
- 1) Montrer que G_0 n'est pas un élément de E.
- 2) Soit |a| < 1. Montrer que

$$H_0(a) = \max_{t \in \mathbb{R}} (at - G_0(t))$$

est bien défini et que la fonction $a \mapsto H_0(a)$ est dérivable sur]-1, 1[.

- 3) Montrer que H_0 se prolonge par continuité sur [-1, 1]. Quelles sont alors les valeurs de $H_0(-1)$ et de $H_0(1)$?
- IV) Soit X une variable aléatoire suivant une loi de Poisson de paramètre $\lambda > 0$, soit pour $k \in \mathbb{N}$,

$$P(X=k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

1) Montrer que la série $\sum_{k=0}^{+\infty} P(X=k)e^{sk}$ est convergente pour tout $s \in \mathbb{R}$. Calculer sa somme $\phi(s)$. Montrer que pour tout $s \in \mathbb{R}$

$$E[e^{sX}] = \phi(s)$$

2) En utilisant la relation

$$(X_1 + X_2 = k) = \bigcup_{h=0}^{k} [(X_1 = h) \cap (X_2 = k - h)],$$

calculer la loi de $X_1 + X_2$ avec X_1, X_2 variables aléatoires indépendantes, de loi de Poisson de paramètres respectifs λ_1, λ_2 .

Soit $n \in \mathbb{N}^*$ et $X_1, ..., X_n$ n variables aléatoires indépendantes, de loi de Poisson de paramètre λ . Calculer la loi de $S_n = X_1 + X_2 + + X_n$.

3) Déduire de 1) et 2) que pour tout $s \in \mathbb{R}$

$$E[e^{sS_n}] = \phi^n(s)$$

- V) Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction croissante et soit X une variable aléatoire à valeurs dans \mathbb{N} telle que la série de terme général $u_n = f(n)P(X = n)$ soit convergente.
- 1) Montrer que la série de terme général |f(n)|P(X=n) est aussi convergente. Montrer que E[f(X)] est bien définie.
- 2) Montrer que si de plus f est positive, alors pour tout M > 0, on a

$$E[f(X)] \ge f(M)P(X > M)$$

3) En déduire que pour s > 0 et a > 0, S_n étant la variable aléatoire introduite au IV) 2), on a

$$P(S_n > na) \le \phi^n(s)e^{-nas}$$

4) En déduire que pour $a > \lambda$, on a

$$P(S_n > na) \le e^{-nH_{\bullet}(a)},$$

où H_* est la fonction définie dans la partie I.

5) Par analogie avec 2), montrer que si f est décroissante sur \mathbb{R} et positive, alors pour tout M > 0, on a

$$E[f(X)] \ge f(M)P(X < M)$$

6) Montrer que pour $\varepsilon > 0$, on a

$$P(\left|\frac{S_n}{n} - \lambda\right| > \varepsilon) \le e^{-nH_*(\lambda + \varepsilon)} + e^{-nH_*(\lambda - \varepsilon)}$$

7) En déduire la loi faible des grands nombres pour un échantillon de la loi de Poisson.

2ème Problème

Les parties I), II), III) peuvent se traiter de manière indépendante. Soit $\mathcal{M}_3(\mathbb{R})$ l'ensemble des matrices carrées d'ordre 3, à coefficients réels. On note I la matrice identité de $\mathcal{M}_3(\mathbb{R})$.

I) Soit

$$A_{\lambda} = \left(\begin{array}{ccc} 6 & -11 & 6 \\ \lambda & 0 & 0 \\ 0 & 1 & 0 \end{array} \right)$$

où λ est un paramètre réel.

1) Pour quelles valeurs de λ la matrice A_{λ} est-elle inversible?

2) Soit V le vecteur

$$\left(\begin{array}{c}1\\0\\0\end{array}\right)$$

dans \mathbb{R}^3 muni de sa base canonique.

- a) Etudier, suivant les valeurs de λ , la dimension du sous-espace vectoriel engendré par les vecteurs $\{V, A_{\lambda}V, A_{\lambda}^2V\}$, puis celle du sous-espace engendré par $\{V, A_{\lambda}V, ..., A_{\lambda}^kV\}$ pour $k \geq 2$.
 - b) Même questions lorsque V est le vecteur

$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

- II) Soit $A \in \mathcal{M}_3(\mathbb{R})$ et V un vecteur non nul de \mathbb{R}^3 donné par ses coordonnées dans la base canonique. On note C l'élément de $\mathcal{M}_3(\mathbb{R})$ dont les vecteurs colonnes sont (V, AV, A^2V) .
- 1) Quelle est la dimension du sous-espace vectoriel engendré par les vecteurs $\{V, AV,, A^kV\}$ pour $k \geq 2$ lorsque :

- a) V est un vecteur propre de A.
- b) C est inversible.
- c) C n'est pas inversible.
- 2) La propriété "A est inversible" implique t-elle la propriété "C est inversible"?
- 3) La propriété "C est inversible" implique t-elle la propriété "A est inversible"?
- III) Dans toute cette partie, V est un vecteur fixé non nul de \mathbb{R}^3 et A est une matrice fixée de $\mathcal{M}_3(\mathbb{R})$.
- 1) Soit

$$U = \left(\begin{array}{c} u_1 \\ u_2 \\ u_3 \end{array}\right)$$

un vecteur de \mathbb{R}^3 et X, Y, Z les vecteurs de \mathbb{R}^3 définis par

$$X = AY + u_1V$$
, $Y = AZ + u_2V$, $Z = u_3V$.

Calculer X en fonction de U et de V. On pose $X = \widetilde{C}(U)$.

Montrer que l'application \widetilde{C} de \mathbb{R}^3 dans \mathbb{R}^3 est un automorphisme si et seulement si la matrice C est inversible.

- 2) Dans la suite, on choisit le vecteur V tel que la matrice C soit inversible.
 - a) Calculer $V_1 = C^{-1}V$ et $V_2 = C^{-1}AV$.
 - b) Montrer que $A_1 = C^{-1}AC$ s'écrit

$$\left(\begin{array}{ccc}
0 & 0 & \alpha \\
1 & 0 & \beta \\
0 & 1 & \gamma
\end{array}\right)$$

pour des nombres réels α, β, γ convenables que l'on ne calculera pas.

- c) Montrer que les matrices (A sI) et $(A_1 sI)$ sont semblables pour tout $s \in \mathbb{R}$. En déduire que A et A_1 ont les mêmes valeurs propres.
- d) On suppose dans cette question que A admet -1, 1, 2 pour valeurs propres et on pose encore $A_1 = C^{-1}AC$.

Montrer que l'équation $s^3 - \gamma s^2 - \beta s - \alpha = 0$ admet -1, 1, 2 comme racines. (On pourra écrire que pour $s \in \{-1, 1, 2\}$, le système d'équations linéaires $A_1W = sW$, d'inconnue $W \in \mathbb{R}^3$, admet une solution $W \in \mathbb{R}^3$, $W \neq 0$.)

En déduire que α, β, γ , et donc A_1 , ne dépendent pas du vecteur V

3ème Problème

1) Soient X, Y, Z trois variables aléatoires indépendantes, à valeurs dans $\{-1, +1\}$. Montrer la propriété suivante:

Pour tout triplet
$$(a, b, c) \in \{-1, +1\}^3$$
,
 $P(X = a \text{ et } Z = c | Y = b) = P(X = a | Y = b)P(Z = c | Y = b)$. (1)

2) Comment construire la loi d'un triplet (X,Y,Z) de variables aléatoires à valeurs dans $\{-1,+1\}$, non indépendantes, telle que la propriété (1) ci-dessus soit satisfaite avec

$$P(X = a \text{ et } Y = b \text{ et } Z = c) > 0$$

pour tout triplet $(a, b, c) \in \{-1, +1\}^3$? On pourra par exemple choisir la même expression pour les lois conditionnelles de X sachant Y = b et de Z sachant Y = b.